From n-gram-based to CRF-based Translation Models

نویسندگان

  • Thomas Lavergne
  • Alexandre Allauzen
  • Josep Maria Crego
  • François Yvon
چکیده

A major weakness of extant statistical machine translation (SMT) systems is their lack of a proper training procedure. Phrase extraction and scoring processes rely on a chain of crude heuristics, a situation judged problematic by many. In this paper, we recast the machine translation problem in the familiar terms of a sequence labeling task, thereby enabling the use of enriched feature sets and exact training and inference procedures. The tractability of the whole enterprise is achieved through an efficient implementation of the conditional random fields (CRFs) model using a weighted finite-state transducers library. This approach is experimentally contrasted with several conventional phrase-based systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum Translation Modeling with Recurrent Neural Networks

We introduce recurrent neural networkbased Minimum Translation Unit (MTU) models which make predictions based on an unbounded history of previous bilingual contexts. Traditional back-off n-gram models suffer under the sparse nature of MTUs which makes estimation of highorder sequence models challenging. We tackle the sparsity problem by modeling MTUs both as bags-of-words and as a sequence of i...

متن کامل

Can Markov Models Over Minimal Translation Units Help Phrase-Based SMT?

The phrase-based and N-gram-based SMT frameworks complement each other. While the former is better able to memorize, the latter provides a more principled model that captures dependencies across phrasal boundaries. Some work has been done to combine insights from these two frameworks. A recent successful attempt showed the advantage of using phrasebased search on top of an N-gram-based model. W...

متن کامل

Shallow-Syntax Phrase-Based Translation: Joint versus Factored String-to-Chunk Models

This work extends phrase-based statistical MT (SMT) with shallow syntax dependencies. Two string-to-chunks translation models are proposed: a factored model, which augments phrase-based SMT with layered dependencies, and a joint model, that extends the phrase translation table with microtags, i.e. perword projections of chunk labels. Both rely on n-gram models of target sequences with different...

متن کامل

N-gram-based Tense Models for Statistical Machine Translation

Tense is a small element to a sentence, however, error tense can raise odd grammars and result in misunderstanding. Recently, tense has drawn attention in many natural language processing applications. However, most of current Statistical Machine Translation (SMT) systems mainly depend on translation model and language model. They never consider and make full use of tense information. In this p...

متن کامل

(Hidden) Conditional Random Fields Using Intermediate Classes for Statistical Machine Translation

One of the major components of Statistical Machine Translation (SMT) are generative translation models. As in other fields, where the transition from generative to discriminative training resulted in higher performance, it seems likely that translation models should be trained in a discriminative way. But due to the nature of SMT with large vocabularies, hidden alignments, reordering, and large...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011